skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Akin, Idil Deniz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2027
  2. Wildfire ash and water-repellent soil are new materials that are formed after a wildfire that change the mechanical and hydraulic behavior of wildfire-burned slopes. Wildfire ash is known to be typically hydrophilic and to retain water, whereas the water-repellent soil layer acts as a hydraulic barrier. However, there is limited in situ soil water content data to understand the short- and long-term impacts of wildfire ash and a water-repellent soil layer on the hydromechanical behavior of burned slopes. This study investigates the trends in water content of wildfire ash, water-repellent soil, and subsurface soil after the 2022 Bolt Creek Wildfire near Skykomish, WA. The ash deposit averaged 10 cm, with a maximum 30 cm thickness in channels immediately after the fire, which allowed the in situ measurement of ash water content. Soil water content sensors were installed in the ash and subsurface soil layers, and changes in the water content were monitored for a year after the fire. The surface ash layer was above a thin (<1 cm) water-repellent soil layer, which was followed by the soil that did not show any apparent effects from the fire. The results showed a reduction in ash thickness and the persistence of the water-repellent layer over a year. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  3. ABSTRACT Desert kangaroo rats (Dipodomys deserti) construct burrows that can create micro-niches favorable to increased microbial activity. The aim of this study was to characterize the bacterial communities found in kangaroo rat burrows, in proximal desert surface sand, and in samples from kangaroo rats. We collected samples from burrow ceilings of actively inhabited burrows, from burrows that were no longer in use, and from the proximal surface sand in the Sonoran Desert, Yuma, AZ. Following DNA extraction from samples, 16S rRNA gene sequencing was performed, and functional predictions were made and assessed for each characterized bacterial community. Active burrow samples exhibited greater alpha diversity but similar beta diversity when compared to surface sand (P< 0.05), with no significant differences observed between abandoned and active burrows. Bacterial genera and genes related to nitrogen fixation, nitrification, and urea hydrolysis were found in significantly higher abundance in active burrows compared to the surface sand (P< 0.05). The core microbiome of active burrow samples was different from surface sand, including higher abundances ofAcidimicrobialesandAcidobacteriasubdivision Gp7. Active burrow samples included 30 unique genera. Kangaroo rat anal swabs shared 12, cheek pouches shared 6 unique genera with burrows. These findings suggest that kangaroo rats can shape the microbial composition of their burrow environment through the introduction of food material and waste, facilitating increased species richness and bacterial diversity.IMPORTANCEAnimals can alter soil parameters, including microbial composition through burrowing activities, excretion, and dietary composition. Desert kangaroo rats (Dipodomys deserti) construct burrows within loose desert sand that have microclimatic conditions different from the surrounding desert climate. In this study, we explored the effect of disturbance from kangaroo rat activities on the bacterial composition of sand. We compared the bacterial community compositions of kangaroo rat (D. deserti) samples, their burrows, and the proximal surface sand. The results showed that burrow sand shows higher richness and diversity of bacterial community with higher abundances of bacterial genera and genes associated with nitrogen fixation, nitrification, and urea hydrolysis compared to the surface sand. These findings suggest that kangaroo rats affect the microbial composition of their burrow environment through the introduction of food material and waste. 
    more » « less
    Free, publicly-accessible full text available May 6, 2026
  4. Kangaroo rats (Dipodomys deserti) construct complex burrow systems in loose desert sand that survive temperature and relative humidity fluctuations and storms. Animals that burrow in desert sand typically burrow in compacted sand, near plant roots, or when the soil is unsaturated. However, these processes are insufficient to explain tunnel stability of kangaroo rats. Our goal is to understand how kangaroo rat burrows remain stable in loose desert sand, intending to translate this knowledge to geotechnical engineering. A kangaroo rat habitat in the dunes of The Sonoran Desert, AZ, was selected for the study. Dynamic cone penetrometer tests performed at active, abandoned, and no-burrow sites demonstrated that the animals prefer loose sand for burrow construction. Soil samples collected from the burrows' ceilings, subsurface, and surface were characterized. Brazilian tensile strength test results showed that burrow soil has approximately 3 times greater tensile strength than the rest at dry state, which indicates increased interparticle attractive stress in burrow ceilings due to biocementation. Laboratory experiments, scanning electron microscopy, and confocal microscopy images showed that fungal and microbial biofilms provided 17 kPa increase in interparticle attractive stress at less than 1% biomass concentration, indicating potential to be used in soil improvement applications. 
    more » « less